Step of Proof: p-fun-exp-add-sq
11,40
postcript
pdf
Inference at
*
2
1
1
I
of proof for Lemma
p-fun-exp-add-sq
:
1.
A
: Type
2.
f
:
A
(
A
+ Top)
3.
x
:
A
4.
m
:
5. 0 <
m
6.
n
:
. (
can-apply(
f
^
m
- 1;
x
))
((
f
^
n
+(
m
- 1)(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
- 1;
x
))))
7.
n
:
8.
can-apply(
f
^
m
;
x
)
9.
n
= 0
(
f
^
m
(
x
)) ~ (
f
^0(do-apply(
f
^
m
;
x
)))
latex
by (((Unfolds ``p-fun-exp`` ( 0)
)
CollapseTHEN (Reduce 0)
)
CollapseTHEN ((Fold `p-fun-exp` 0
C
)
CollapseTHEN (RepUR ``p-id`` ( 0)
)
)
)
CollapseTHEN ((RWO "inl-do-apply" 0)
Co
CollapseTHEN (Auto
)
)
latex
C
.
Definitions
p-id()
,
f
^
n
,
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
P
Q
,
x
:
A
B
(
x
)
,
Void
,
a
<
b
,
A
B
,
x
:
A
.
B
(
x
)
,
t
T
Lemmas
inl-do-apply
,
p-fun-exp
wf
,
le
wf
origin